

Draft NTP Technical Report TR 571 on Kava Kava Extract

Mamta Behl, PhD
Po C. Chan, PhD
Rajendra S. Chhabra, PhD, DABT

National Institute of Environmental Health Sciences

NTP Technical Reports Peer Review Meeting January 26, 2011

Chemical Structure

Kava Kava extract comprises 30% total kavalactones

- Consisting of 6 major kavalactones

R1,R2,R3,R4 = H

Exposure and Use

- Leading dietary supplement -- crude herb, tinctures, powdered and standardized extract, capsules, tea
- Rapidly growing use in the United States market
- Used for anxiety and nervous disorders (stress, restlessness)
- Promoted as a substitute for Ritalin in children
- · Banned in several European countries due to liver effects
- Consumption highly variable -- as high as 2.5 g/day in adults

Nomination

Nominated by National Cancer Institute based on:

- · Widespread exposure
- · Reports of hepatotoxicity in humans -- cirrhosis, liver failure
- Increasing concern about its use by the U.S. Food and Drug Administration and the World Health Organization
- · Lack of toxicity and carcinogenicity data

Experimental Design

Genotoxicity: In vitro and in vivo (mice)

Two-week studies: 0, 0.125, 0.25, 0.5, 1, 2 g/kg (n = 5)

Three-month studies: 0, 0.125, 0.25, 0.5, 1, 2 g/kg (n = 10)

Two-year studies: Rats: 0, 0.1, 0.3, 1 g/kg (n = 50)

Mice: 0, 0.25, 0.5, 1 g/kg (n = 50)

Two-week Studies

Rats

- · No chemical-related effects on survival or body weight
- Minimal hepatocellular hypertrophy in 2 g/kg males and ≥ 0.25 g/kg females
- Increase in liver weight in ≥ 1g/kg males and in ≥ 0.5 g/kg females
- Doses selected for 3-month studies: 0, 0.125, 0.25, 0.5, 1, 2 g/kg

Mice

- · No chemical-related effects on survival or body weight
- Increase in liver weight in 2 g/kg group with minimal hypertrophy
- Doses selected for three-month studies: 0, 0.125, 0.25, 0.5, 1, 2 g/kg

Three-month Studies

Rats

- · Survival decreased in 2 g/kg males and females
- Significant decrease in body weight in ≥ 1g/kg males and 2g/kg females
- Increase in liver weights of ≥ 0.25 g/kg males and ≥ 0.5 g/kg females
- Increase in hepatocellular hypertrophy in 2 g/kg females
- Clinical pathology findings considered unremarkable
- No effects in sperm parameters of males or the estrous cyclicity of females
- Doses selected for two-year studies: 0, 0.1, 0.3, 1 g/kg
 - No decrease in survival or dose-limiting pathology observed at 1 g/kg
 - Minimal hepatocellular hypertrophy not considered dose-limiting

Three-month Studies

Mice

- · Survival decreased in 2 g/kg males and females
- Increase in liver weights in 2 g/kg males and ≥1 g/kg females
- Increase in centrilobular hypertrophy in ≥ 0.5 g/kg males and ≥ 1 g/kg females
- · Clinical pathology findings were considered unremarkable
- No effects in sperm parameters of males or the estrous cyclicity of females
- Doses selected for two-year studies: 0, 0.25, 0.5, 1 g/kg
 - No decrease in survival or dose-limiting pathology observed at 1 g/kg
 - Minimal hepatocellular hypertrophy not considered dose-limiting

Two-year Studies

Rats

- Survival
 - Survival of dosed groups of males and females was similar to controls
- Body Weight
 - Decrease in mean body weights of males and females (~ 16%) in 1 g/kg group compared to controls

Neoplastic Lesions - Rats

Neoplasms and Nonneoplastic Lesions of the Testis in Male Rats

	Control	0.1 g/kg	0.3 g/kg	1.0 g/kg
No. Examined	49	50	50	50
Interstitial Cell Hyperplasia	17(1.9)	15 (2.1)	10 (2.4)	4**(2.5)
Bilateral Interstitial Cell Adenoma	29	32	40*	43**
Interstitial Cell Adenoma (includes Bilateral)	37/49 (76%)	44/50 (88%)	49/50 (98%)	46/50 (92%)
Poly-3 test	P = 0.003	P = 0.056	P = 0.002	P < 0.001

Historical incidence

[•]Two-year gavage studies with corn oil vehicle control groups (mean ± standard deviation): 176/199 (88.4% ± 8.6%), range 76%-94%

[•] All routes: 1,053/1,298 (81.1% ± 13.4%), range 54%-98%

Nonneoplastic Lesions - Rats

Males and females (high-dose group)

- · Liver (hypertrophy, fatty change, cystic degeneration)
- Forestomach (inflammation, ulcer, epithelial hyperplasia)
- · Kidney (nephropathy, epithelial hyperplasia)
- · Eye (retinal degeneration)
- · Pancreas (acinus hepatocyte metaplasia)

Two-year Studies

Mice

- Survival
 - Survival of dosed groups of males and females was similar to controls
- Body Weight
 - Decrease in mean body weights of females (~ 18%) in 1 g/kg group compared to controls

Neoplastic and Nonneoplastic Lesions in Liver of Male Mice

	Control	0.25 g/kg	0.5 g/kg	1.0 g/kg
No. Examined Microscopically	50	50	50	50
Centrilobular Hypertrophy	0	34** (1.0)	30**(2.0)	39**(2.0)
Eosinophilic Foci	28	32	42**	43**
Angiectasis	3 (1.0)	6 (1.0)	7 (1.1)	10* (1.7)
Necrosis	3 (1.7)	10* (2.0)	7 (2.0)	13** (2.0)
Hepatocellular Adenoma	27	32	29	35
Hepatocellular Carcinoma	20	18	26	20
Hepatoblastoma	0/50	4/50 (8%)	9/50 (18%)	12/50 (34%)
Poly-3 test	P < 0.001	P = 0.057	P = 0.002	P < 0.001
Hepatocellular Carcinoma or Hepatoblastoma	20/50 (40%)	21/50 (42%)	30/50 (60%)	25/50 (50%)
Poly-3 test	P = 0.136	P = 0.426	P = 0.046	P = 0.205

Neoplastic and Nonneoplastic Lesions in Liver of Female Mice

	Control	0.25 g/kg	0.5 g/kg	1.0 g/kg
No. Examined Microscopically	50	50	50	50
Centrilobular Hypertrophy	0	20** (1.0)	48** (1.9)	49** (2.0)
Eosinophilic Focus	9	7	16	26**
Hepatocellular Adenoma	8	11	14	5
Hepatocellular Carcinoma	3/50 (6%)	13/50 (26%)	8/50 (16%)	8/50 (16%)
Poly-3 test	P = 0.337	P = 0.007	P = 0.126	P = 0.109
Hepatocellular Adenoma or Carcinoma	10/50 (20%)	21/50 (42%)	20/50 (40%)	13/50 (26%)
Poly-3 test	P = 0.542	P = 0.015	P = 0.036	P = 0.338

Genetic Toxicology Studies

- · Bacterial assays (Salmonella and E. Coli) negative
- No increase in micronucleated erythrocytes in male or female mice after
 3-month exposure

Conclusions

- Equivocal evidence of carcinogenic activity in male F344/N rats
 - Marginal increase in testicular adenomas
- No evidence of carcinogenic activity in female F344/N rats
- Clear evidence of carcinogenic activity in male B6C3F1 mice
 - Increased incidence of hepatoblastoma and hepatoblastoma and carcinoma (combined)
- Some evidence of carcinogenic activity in female B6C3F1 mice
 - Increased incidence of adenoma and carcinoma (combined)
- Increases in nonneoplastic lesions
 - Male and female rats and mice: liver
 - Male and female rats and female mice: forestomach
 - Male and female rats: kidney, eye, pancreas